

Enabling Higher Data Rates for Planetary Science Missions

Les Deutsch¹

S. A. Townes¹, T.J.W. Lazio¹, D. J. Bell¹, N. Chahat¹, J. Kovalik¹, I. Kuperman¹, J. Sauder¹, P. E. Liebrecht², D. M. Cornwell²

¹JPL, Caltech, ²NASA

Higher Data Rates and Volumes

Implementation

Primary Ops

Extended Op

Q

Reconnaissance Orbiter

- What's been accomplished?
- Why is it important?
 - How are we going to do it?
 - All missions
 - Small spacecraft

OSIRIS-REX

JUICE (ESA)

NEOWISE

Mars Express
Mars (ESA)
Opportunity
Rover
Opportunity
Rover

MAVEN

Exo
(ESA)

Mars Rover
ight 2020

Europa

Higher Data Rates for Planetary Science

2 IPDATED 10/14/201

Deep Space Network

History of Planetary Data Transmission Improvements

Remote Sensing at Other Planets as at Earth

Future Mission Data Rate Trends

Science Directions

- Have visited all major objects in Solar System, Global continuous presence on Mars since 2004
- Trends: Revisit for more intense study, Smaller spacecraft and constellations, Humans beyond LEO

Mission modeling indicates desire for ~ 10× data improvement per decade (at least) through 2040

Internet Communications Trend

- Consider trend in digital communications since the Internet was invented
- Trend is ~1.3 orders of magnitude per decade

We believe spacecraft data needs will grow similarly – we will use 1.0 order of magnitude per decade

Decade 1: 10× Improvement over Today

- Remove bottlenecks on spacecraft and DSN
 - Universal Space Transponder (UST)
 - Common Platform DSN signal processor

Increase use of Ka band over X band

Factor of ~ 4x improvement

- Antenna arraying
 - DSN Aperture Enhancement Project emplacing additional 34 m antennas
 - Provides backup for 70m capability as well as arraying beyond 70m

Optical Comm – Planned Psyche Demo

Deep Space Small Spacecraft Technologies

- CCSDS-compatible X-band radio Ka-band & DTN in development
- 0.5m Ka-band deployable parabolic antenna
 - First flight on RainCube as radar antenna
- Optical terminals for CubeSats
 - kbps at 2.5 AU using binary pulse-position modulation and polarization modulation (2-PZM)
- Demo of DSN "opportunistic multiple spacecraft per aperture" (OMSPA) completed
 - Provide essentially unlimited number of simultaneously-tracked spacecraft
- Working with universities to create a federated network of ground antennas, based on existing standards

JPL CubeSat optical terminal

The DSN and the Interplanetary Internet

Long Term Communications Trend

- Data gleaned from the Internet suggests ~ 0.34 orders of magnitude per decade
- ... we all know (feel?) the Information Age has accelerated this

